盘点丨几大中国互联网巨头的隐私计算领域布局情况
The following article is from 机器之心 Author 吴昕
安全多方计算(Secure Multi-Party Computation)
机密计算(Confidential Computing)
联邦学习(Federated Learning)
腾讯
蚂蚁
阿里
百度
字节跳动
随着数据安全合规流通成为必然,隐私计算作为当下实现数据「可用不可见」的唯一技术解,对未来的科技产业以及实体经济的关键领域将产生重要影响。除了典型的金融、医疗等场景,隐私计算也被探索用于越来越多的行业与领域。
例如,电力公司通过隐私计算,可实现对电网数据的全生命周期进行保护,使得数据能够安全上云,或外包给计算服务方进行计算,实现电力企业的降本增效。广告平台使用隐私计算对用户数据进行加密,让原始数据不可识别,从而在不揭示个人信息的前提下完成广告定向和个性化推荐,运用联邦学习等技术,可以在不共享原始用户数据的前提下多方共同训练一个机器学习模型,还能在用户终端内完成个性化推荐,确保推荐效果的同时最大限度保护用户隐私。未来,创新的隐私保护方案,包括用于移动设备的可信执行环境,能在移动个性化推荐服务中实现令人满意的用户体验并保护用户隐私,真正实现双赢。出行领域,隐私计算使运营商与服务提供商可在加密状态下使用线上数据,对城市交通状况与出行需求进行分析与预测,为交通调度与新业务创新提供基础,同时保护用户隐私和数据安全。
我们已经看到,充分释放数据的价值能够推动革命性的创新,试想一个个比 ChatGPT 更加智能的产品进入生活,了解我们的兴趣与习惯,提供定制化服务,让工作和生活变得前所未有的便利与个性化。在这一过程中,隐私计算将作为新技术应用中不可或缺的一部分,让数据在创造价值的同时保持安全可控,守护人们对隐私保护的合理预期。
参考资料
Gartner《2022 年新兴技术成熟度曲线》
中国信息通信研究院《隐私计算白皮书(2022年)》
《网络安全技术和产业动态》2022年第10期,总第28期
CB Insights China《2022年中国隐私计算技术与市场发展研究报告》